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Abstract—Gradient Descent (GD) is one of fa-
mous machine-learning methods used for prediction
on regression tasks in many fields. However, only
a few software library utilizing it can be found in
the literature. Therefore, this research is aimed to
implement the method and the following variants:
Mini-Batch Gradient Descent (MBGD), Stochastic
Gradient Descent (SGD), and Stochastic Average
Gradient Descent (SAG). The package is written in
the programming language R, which is a software
environment offering many facilities for statistics
and machine-learning tools. Moreover, we provide
the use of these approaches in a case study of gas
industries, which is to predict values of the com-
pressibility factor (Z-factor) of CO2. Basically, we
consider the problem as a regression task including
pressure and temperature as the input attributes.
The first step is generating a learning model from
available training data by using the methods. Then,
the model is used to predict the Z-factor over
new data. A performance comparison between the
package and other methods from the literature is
presented as well.

Keywords – gradient descent; R package; compress-
ibility factor; machine learning; experimental study

I. Introduction

Nowadays, machine learning, which is one field in
Computer Science focusing on algorithms that are
able to learn from data [1], has been discussed and
used for dealing with many problems intensively. GD
[2] as a basic method in machine learning is used
for optimization of local minimal and prediction on
regression problems. For example, in the research [3, 4]
GD is embedded to optimize fuzzy rule bases.

Because of the popularity, researchers have been
developing many algorithms based on GD, so that
the performance can be improved. We can find some
examples of GD’s modifications, such as SGD [5] and
SAG [6]. Implementations on parallel computing are
also done by e.g., [7].

In this study we attempt to accomplish two ob-
jectives. First, it is aimed to implement GD and
its variants for solving regression tasks in the pro-
gramming language R [8]. We choose R since it has
been showing as an open-source environment that
provides complete software libraries for many areas,
such as machine learning, statistics, graphics, high

performance computing, etc. Moreover, according to
a survey conducted by KDnuggets [9], R was the
most popular programming language to be used for
an analytics/data mining/data science in 2015. The
second objective is to predict Z-factor of CO2 by
utilizing the proposed package. It is an important task
in industry, e.g., chemical, oil, and gas engineering. For
example, it is to determine CO2 compression, design
of pipeline, material balance calculations and surface
facilities design [10].

The remainder of this paper is structured as follows.
Section II briefly gives an introduction to the pro-
gramming language R and its ecosystem. Section III
presents the first objective, which is the implemen-
tation of GD and its variants in R. In Secton IV
and Section V, we illustrate some experimentations
of Z-factor calculations and their analysis. Finally,
Section VI concludes the research and its future work.

II. R and its Ecosystem

R is an open-source programming language and
analysis environment containing more than 8000 pack-
ages for statistics, bio-informatics, visualization, ma-
chine learning, economics, etc [8]. Moreover, R can be
run in many operating system such as Linux, Mac OS
X, Solaris, and MS Windows. As of this writing, the
stable version of R is 3.2.5, which can be downloaded
at http://www.r-project.org.

R is constantly improving and offering a lot of
benefits for scientists, engineers, and practitioners.
The following are some advantages to use R: (i) it
is open source and available for multiple platforms;
(ii) it provides comprehensive data structures for
data analysis, such as matrix, data.frame, list,
etc; (iii) it allows to write code in procedural,
functional, and object-oriented programming ways;
(iv) it can be embedded by other programming
languages, such as C++ and FORTRAN ; (v) it
provides a lot of primitive functions, especially
for statistics and graphics; (vi) there are some
solid communities to build useful packages and
to help R users (e.g., the Rhelp mailing list
(http://stat.ethz.ch/mailman/listinfo/r-help), stack-
overflow (http://stackoverflow.com/questions/tagged/r),
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etc). Moreover, some books have been published to
introduce R, such as [11, 12].

To make easy to use, to keep in good quality,
and to maintain continuously, mostly R packages
are saved in the following repositories: the
Comprehensive R Archive Network (CRAN,
http://cran.r-project.org/) and Bioconductor Project
(http://www.bioconductor.org/). The first one
contains more than 6000 packages included in 30
task views (e.g., Cluster, Environmetrics, High
Performance Computing, Machine Learning, Natural
Languages Processing, etc.) whereas Bioconductor
focuses on R packages related to the bio-informatics
field. For example, in CRAN we can find following
packages grouped in Machine Learning: frbs [13, 14]
and RoughSets [15].

III. Implementation: Gradient Descent and
Its Variants

GD is a famous algorithm to find a local minimum of
an objective function by searching along the steepest
descent direction. Therefore, as long as the current
iterate point is not a stationary point, the method
certainly moves to a lower value of the objective
function [16].

In machine learning, it is mostly used for dealing
with supervised learning, which is regression tasks.
By using GD, we construct a model represented in
a linear equation that maps the relationship between
input variables and the output one. In other words,
GD determines suitable coefficients of each variable so
that the equation can express the mapping correctly.
Algorithm 1 illustrates steps to obtain the coefficients
of linear equations.

input : Data training with dim(m,n+ 1)
containing input samples
X : x1, . . . ,xm and output values
y : y1, . . . , ym,
maximum iteration maxIter,
step size α.

output: The best coefficients θ for the
hypothesis function hθ

Generate initial coefficients θ randomly;
while (t < maxIter)||((θnew − θold) < ε) do

θ0 ← θ0 − α 1
m

∑m
i=1(hθ(x

i)− yi)
θ1 ← θ1 − α 1

m

∑m
i=1(hθ(x

i)− yi)x1
. . .
θn ← θn − α 1

m

∑m
i=1(hθ(x

i)− yi)xn
Update the coefficients θnew : θ0, θ1, . . . , θn

end
Algorithm 1: Pseudo code of GD [2].

From the computing perspective, obviously there is
a main drawback in Algorithm 1, which is high compu-
tation cost corresponding to numbers of datasets. It is
happened because we need to calculate the hypothesis

function of each data sample for every iteration. There-
fore, researchers have been introducing some variants
of the method. For example, the study [17] proposes
the MBGD algorithm. SGD [5] and SAG [6] are also
used to speed up the algorithms. These algorithms
have been implemented to deal with many problems,
such as image processing [18, 19] and breast cancer
classification [20].

In this research, we develop an R package imple-
menting four algorithms based on GD: original GD,
MBGD, SGD, and SAG. The package is called grad-
DescentR. These algorithms are written into a main R
function, with the following signature:

trainData <- function(dataset,

+ nData = nrow(dataset), theta,

+ alpha = 0.1, maxIter = 1,

+ maxError = 0, isNormalize = TRUE,

+ typeMethod = "GD", seed = NULL)

It can be seen that to run the function, we need to
supply several parameters. Some parameters have a
default value while the others must be defined. The
most important argument is dataset representing data
training in data.frame. theta is used to initiate the co-
efficients while alpha, maxIter, maxError, isNormalize,
typeMethod, and seed express the step size, maximum
iteration, tolerated error, normalization of the dataset,
the chosen method, and a seed value of random gener-
ation, respectively. Especially for typeMethod, we can
select one of the following values: “GD”, “MBGD”,
“SGD”, and “SAG”.

After obtaining a linear model, we need to perform
the prediction() function. This function has the follow-
ing signature:

prediction <- function(model, dataTest)

So, there are two arguments in the function: model and
dataTest, representing an R object of the linear model
and new data for testing, respectively.

IV. Experimental Study: The compressibility
factor of CO2

In this section, we illustrate the use of the package
for calculating Z-factor of CO2. However, firstly we
explain the problem formulation more detail in the
next section. Data gathering and experimental design
are discussed as well.

A. Problem Definition

One of the problems in calculation in industry is
analyzing Z-factor, which is defined as the ratio of the
molar volume of a gas to the molar volume of an ideal
gas at the same temperature and pressure [21]. This
factor is important for prediction the thermodynamic
properties of the gas, relating to the phase change,
the temperature, and the pressure of the gas [22]. In
short, Z-factor is defined in terms of the gas constant
R and the measurable gas variables (i.e., pressure P ,
volume V , absolute temperature T , and quantity). The
quantity is expressed as the number of moles n and
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density ρ. The simple expression of Z factor can be
written in the following relationship [23]:

Z =
P

ρRT

Moreover, Z-factor of CO2 is an essential calcu-
lations in chemical, oil, and gas engineerings. For
example, calculating Z factor is used to determine
CO2 compression, design of pipeline, material balance
calculations and surface facilities design [10]. It is also
important to do in enhanced oil recovery combined
with carbon sequestration in mature oil fields [24, 25].

Mostly, there are four strategies to determine Z
factor of CO2. First, it can be done by experimen-
tal/laboratory measurements. Even though we can
obtain the precise values, these procedures are usually
expensive, time consuming, and cumbersome experi-
ments [26]. Another method to predict the Z factor
is by calculating equations of state (EOS) [27]. A
main drawback of this approach is that we need to
construct and solve a model containing complicated
and implicit equations. The third way is much easier
and faster, which is via correlations. Since correlations
are built by multiple steps sequentially, the error will
be propagated in the other calculations [28]. Because
of these disadvantages of each approach, machine-
learning approaches as the last strategy are proposed.
The following are studies conducting machine learning
for calculating Z factor: [29–32].

B. Data Gathering and Experimental Design

In order to do some experimentations, we are us-
ing some data collected experimentally by George C.
Kennedy [33]. The data contain 2110 samples involving
temperature (T ) in Celsius, pressure (P ) in bars, and
density in gr/cc. After doing conversion, we obtain a
relationship between input attributes (i.e., T in Kelvin
and P in atm) and the output (i.e., Z factor). To get
a good distribution of T , P , and Z, we need to shuffle
the data.

After gathering and pre-processing the data, we
make the following experimental design. We firstly
split the data into two groups: training and testing.
The training data, used for learning or constructing
a linear model, contain 80% of data while the rest
is for testing. Corresponding to four implemented
methods based on GD, there are four scenarios of
the experiments: using GD, MBGD, SGD, and SAG.
For every scenario, we perform several maximum it-
erations (maxIter) and number of datasets on each
batch (nData) with two different values of alpha as
illustrated in Table I. The last step is to calculate
Root Mean Squared Error (RMSE). Furthermore, we
compare the results with other methods: Subtrac-
tive Clustering (SBC ) and Dynamic Evolving Neural-
Fuzzy Inference System (DENFIS ) included in the R
package frbs [13].

TABLE I
Scenarios and the input parameters.

Scenario Method alpha nData maxIter
1 GD 0.1,

0.01
- 10, 20, 30, 40,

50, 60, 70, 80,
90, 100, 1000

2 MBGD 0.1,
0.01

10, 20 1, 2, 3, 4, 5, 6,
7, 8, 9, 10

3 SGD 0.1,
0.01

1 1, 2, 3, 4, 5, 6,
7, 8, 9, 10

4 SAG 0.1,
0.01

10, 20 1, 2, 3, 4, 5, 6,
7, 8, 9, 10

TABLE II
Result comparison with other methods.

Method Parameters Best RMSE
GD maxIter = 1000, alpha = 0.1 0.151
MBGD maxIter = 3, nData = 10,

alpha = 0.01
0.152

SGD maxIter = 2, alpha = 0.1 0.153
SAG maxIter = 4, nData = 10,

alpha = 0.1
0.165

SBC r.a = 0.5, eps.high = 0.5,
eps.low = 0.15

0.229

DENFIS Dthr = 0.01, max.iter = 300,
step.size = 0.01, d = 2

0.563

V. Results and Discussion

After running some simulations with several values
of the parameters indicated in Table I, we obtain the
best predicted Z factor of CO2 of all methods as
illustrated in Figure 1. It can be seen that even though
at beginning all methods cannot predict precisely, they
give small errors after the index 144. It might be
happened because Z-factor values on the index from 1
to 144 are fluctuating and sensitive. In other words,
these values should be approximated by a method
using a set of hypothesis functions expressed by non-
linear equations instead of a linear one as GD.

In more detail, we can see RMSE of all methods
based on GD and its comparison with SBC and
DENFIS in Table II. It can be seen that GD gives
the smallest RMSE, which is 0.151 on the iteration
1000. However, regarding the number of iterations,
SGD, MBGD, and SAG can obtain the best RMSE
on second, third, and fourth iterations. It should be
noted that even though on the second iteration SGD
has the best RMSE, it does not mean on the next
iterations, the method consistently has the same or
better values of RMSE. It can be understood because
they are included in a stochastic algorithm. Moreover,
two other methods as the comparison, which are SBC
and DENFIS, are difficult to obtain better results
because the Z-factor datasets probably contain small
intervals and sensitive values.

VI. Conclusion and Future Work

There are two main contributions in this research.
The first one is to create an R package for regression
tasks, called gradDescentR. It implements four algo-
rithms based on GD and its variants (i.e., MBGD,
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Figure 1. Comparison between real and predicted values of Z factor.

SGD, and SAG). Second, we perform some experi-
ments to calculate Z-factor of CO2 by using the pack-
age. Moreover, some comparisons are also presented.

As future work, we plan to implement other variants
of GD, such as Accelerated Gradient Method (AGM),
Incremental Aggregated Gradient (IAG), and GD with
momentum, for the same task. Furthermore, we will
be studying the implementations of the methods in
parallel computing.
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